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It is still an open question whether the complete latig®) of all orthogonally closed
subspaces of an incomplete inner product sgaaémits a nonzero charge. A negative
answer would result in a new way of completeness characterization of inner product
spaces. Many partial results have been established regarding what has now turned to
be a highly nontrivial problem. Recently, in Dveesiskij and Bk (Letters in Math-
ematical Physics62, 63—70, 2002) the range of a finitely additive staten F(S),

dim S= oo, was shown to include the whole interval [0, 1]. This was then generalized

in Dvurecenskij (nternational Journal of Theoretical Physic2003) for general inner
product spaces satisfying the Gleason property. Motivated by these results, we give a
thorough investigation of the possible ranges of chargeS(@), dim S> 3. We show

that if the nonzero charge is bounded, then for infinite dimensional inner product
spaces, Range) is always convex. We also show that this need not be the case with
unbounded charges. Finally, in the last section, we investigate the range of charges on
F(9), dim S= oo, satisfying the sign-preserving and Jauch—Piron properties. We show
that for such measures the range is again always convex.

KEY WORDS: Hilbert space; inner product space; orthogonally closed subspaces;
completely additive signed measures; charges; sign-preserving property; Jauch—Piron
property.

1. INTRODUCTION

Let H be a separable Hilbert space, ditr> 3, and letL (H) be the complete
guantum logic consisting of closed subspacebkloffhe cornerstone of quantum
logic theory onL(H) is Gleason’s theorem (Dvurenskij, 1992; Gleason, 1957;
Ptak and Pulmannay; 1991; Varadajan, 1985), which asserts that for every state
son L(H) there exists a unique Hermitian trace operdtan H with unit trace,
such that

s(M) = tr(TPy), M € L(H),
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wherePy, denotes the orthoprojection bf onto M. This fundamental and highly
nontrivial result is of crucial importance for the probabilistic theont.¢H) and
has many generalizations and applications (see, for example, éansigj, 1992).
One of the fundamental consequences of Gleason’s theorem related to the hidden
variable hypothesis in quantum mechanics is the nonexistence of two-valued states
on L(H) whereH is any Hilbert space of dimension at least 3 (see Alda, 1980;
Chetcuti, 2002; Dvureenskij, 1992).

In what follows, letSbe an inner product space (real, complex, or quaternion)
and let(., -) be the inner product oB8. For each subseA C Slet At ={be S:
(a, b) = 0foralla € A}. Moreover for any two subspacésc B of S, we denote
A+ N B by A'e. Denoted byF (S) the set of albrthogonally closed subspaces of
S, thatis

F(9={McS: Mt =M},

and letPy(S) be the family of all the finite dimensional subspace$ofhen (see,
for example Maeda and Maeda, 197B),S) is a complete lattice, where for the

meet we have
AM =M,
iel iel

while for the join we have

11
V- (o)
iel iel

We recall thatF(S) does not have to be orthomodutain fact Amemiya
and Araki (1966) proved the following algebraic criterion for the (topological)
completeness of an inner product sp&can inner product spacgis complete if
and only if F(S) is orthomodular. In the sequel, unless otherwise stated, we shall
not assume the completenessSof

A completely additive signed measueF (S) is a mappingn : F(S) - R
such that, iff M; : i € |} is any collection of orthogonal elementsk{S) then

m<\/ Mi> = m(M). (1.1)
i€l iel
A charge mon F(S) is a mappingn : F(S) — R such that eq. (1.1) holds only
for finite orthogonal collections. A stateis a o-additive measure such that its
range lies in the interval [0, 1] ar&(S) = 1. (A finitely additive state is defined
analogously.)

Since Hilbert spaces form a proper subfamily of the class of inner prod-
uct spaces (over the same field), it is indispensable to have completeness criteria

3F(9) is said to be orthomodular if for every, B € F(S), A C B, we haveB = AV (A A B).
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that characterize the complete among the incomplete spaces. The first measure-
theoretic completeness criterion forinner product spaces was presented by Hamhal-
ter and Pak in 1986 (Homhalter andi&, 1987). It was proved that for a separable,
real, incomplete inner product spa8geF (S) admits nos-additive states. This re-
sult was then generalized and many new measure-theoretic completeness criteria
were derived (Dvuregnskij, 1992). However, it is still unknown whethe(S)—
for an incomplete inner product spaBe-admits any finitely additive states. We
have only partial results concerning this problem (see Chetcuti and Eanskij,
2003; Dvureénskijet al., 1990). Recently, it has been proved in Dwerskij
and Rak (2002) that ifSis any inner product space of infinite dimension arisl
any finitely additive state ok (S) then Rangeg) =[O0, 1]. (This was then extended
in Dvurecenskij (in press) to all generalized inner product spaces satisfying the
“Gleason Property.”)

Motivated by these results, we study the possible ranges of charge&Spn
We shall see that when the charge is bounded, its range is always convex. We shall
also show that the situation can be very different for unbounded charges. Finally,
sign-preserving charges 61(S), dim S= oo, are considered and we prove that for
such a measure satisfying the Jauch—Piron property the range is also a convex set.

2. CHARGES ON F(S) WHEN S= H, (n < 3)

In this section we shall investigate the possible range of a cmargelL (H,)
wheren is at least 3. If we lek = m(H,), and denote byyq] the one-dimensional
subspace i, spanned by, we show that iim is bounded, then we either have
m([x]) = § for all x € H, (and therefore Rangen) = {0, T, % ..., k}), orelse
there exisg, b € R, a < b, such that4, b] ¢ Rangefn).

The following is Gleason’s theorem for bounded chargek @t,). (See, for
example Dvureénskij (1992), Theorem 3.2.16.)

Theorem 2.1. For every bounded charge m or{l,)), n > 3, there is a unique
Hermitian trace operator T on Ksuch that
m(M) = tr(TPy), M e L(Hy).

The following is a standard result in Functional Analysis. The reader may
need to look at any book on Functional Analysis, for example, Kreyszig (1986).

Proposition 2.2. Let H, be an n-dimensional Hilbert space. Let T be a Her-
mitian trace operator on Kl If A; > A, > ... > Ay, are the eigenvalues of T
corresponding to eigenvectors,Xo, ..., Xn, then we have

A=max(Tx,x) and i, =min(TX, X).
1 X7é0( ) n X7é0( )
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Moreover

A= max(Tx,x), where Y=spXy,...,%_1}".
0#£XeY;

Although a proper extension, the following result is analogous to that in
Dvurecenskij and, Ptak (2002).

Theorem 2.3. Let m be a nhonzero bounded charge diHk)(n > 3) and let0 <
« = m(Hy). We either have that (fx]) = . for all x € H, (and thereforeRange
(m)={7, ZFK ..., k}), orelsethere existd € R, a < b, such thafa, b] ¢ Range

(m). In addition,[miny..o m([X]), max..o M([x])] € Rangefn).

Proof. It is clear that if we definen : L(H,) — [0, «] by m([x]) = { for all
X € Hp, thenmis a positive charge oh(H,). We shall call this charge the trivial
discrete charge oh(H,). Suppose that this is not our measure, that is) ket
such thatm([x]) = A andm([y]) = » wherex, y € H,. By Theorem 2.1, there
exists a unique Hermitian trace operalfoon H,, such thaim(M) = tr(TPy) for

anyM € L(Hp). The spectral theory of trace Hermitian operators yields that

m(M) =Y ki (Puxi, %), M e L(Hp),

i<n

wherer; = m([x]) = (T X, X ) is the eigenvalue of corresponding to the proper
eigenvectorx;. It is evident that) ;_, m([x]) = « and therefore ifm([x]) =
m([x;]) foralli < j <n, thenmis the trivial discrete measure defined above. So
we can pickxi,, xi, from {x; : i < n} such thatkj, = m([x;,]) < m(x;,]) = Ai,.
Let

Yy = X, COSp + Xi, Sing, b e [0%}

Then
m(yD) = > xilly, x)I?

i<n
= i, c0S ¢ + Aj, SirP ¢
=acog ¢ + bsirt ¢,
where we have identified;, and;, with a andb respectively. It is clear that we
have B, b] C Rangefn). O

Proposition 2.4. Let m be a nonzero bounded charge ofH}), (n > 3), not
equal to the “trivial discrete charge.” If a= m(A) < m(B) = b, where AB ¢
L(Hn), AL B,dim A =dim B, then[a, b] c Rangefn).
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Proof: By Gleason’s Theorem 2.1. there exists an orthonormal set of vectors
{X :i <n}andasefii :i < n}ofreal numbers such that

m(M) =) "2 (Puxi, %), M e L(Hn).

Let A=[a1] @ [a] ®--- P [ap] and B = [b1] & [b2] & --- @ [bp] be two or-
thogonal subspaces such that m(A) < m(B) = b. (We take{a, : g < p} and
{by : g < p} to be normalized.) For every < p, we define

Yq = 8q COS¢ + by sing, ¢ € [0, %]
and putY =[y1] ® [y2] @ --- @ [yp]. Then
mY) = > A (PyXi, X;)

i<n

=D 2 Y 1(Ya, X))

i<n q=p

=YD xilag, x) cos¢ + (bg, X;) sing|*

g<pi<n
= m(A) cog ¢ + m(B) sir? ¢
+cospsing Y Y Aif{ag, %) (X, bg) + (bg, %) (i, ag)}

a=pi=n
= m(A) cog ¢ + m(B) sir? ¢ + y cosg sing,

wherey € R.Byelementaryreal analysistheory, it follows theatlh] c Rangefn).
This completes the proof. O

We now show that the condition “bounded” in Theorem 2.3 and Proposition
2.4 is not superfluous. Indeed we exhibit an unbounded cmagge L (H,,) such
that no interval iR is included in its range.

Proposition 2.5. For any n> 2, there exists an unbounded chargeom L(H,)
such thatRangefny) is countable and infinite.

Proof: Letn = 2. Take a sequence of one-dimensional subspddgs n € N}
which contains no orthogonal pairs. Define a mappmg L(H;) — R via

0 if M = {0},
1 if M = Hy,
n+1 if M= M,
-n if M=MI,

mo(M) =
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and on other one-dimensional subspabgsM* choosemy(M) € {2, —1} such
thatmg(M) 4+ mg(M+) = 1. Thenmg is an unbounded charge and Ramgg)(= Z.
For the case whem > 3, we make use of the result of Hamel (1905).

This states that there exists a discontinuous additive functpnd® — R. He
proved that there exists a subdt= {5 :i € |} C R such that every real num-
ber can be uniquely representedras %, 6iSs Wherelg is a finite subset of
I,s € Vandg; € Q. Itis clear thatvV contains at least one irrational numlsgr
(In fact, V includes at most one rational number.) If we gtic;,5iS) = B1.
then ¢ is the functional in question. For anye H,, ||x|| = 1, define the map
Mo : L(H,) — R by mg = ¢ o s, wheresy is the Gleason state on(H,) de-
fined bys(M) = (PuX, X), M € L(Hp). It can be seen thahg is a charge on
L(Hn) and since Range() C Q, it follows that Rangety) is countable. In-
deed, it can be proved (see Dvoeaskij, 1992, Proposition 3.2.4) that, is
unbounded. O

3. BOUNDED CHARGES ON F(S) WHEN dim S= oo

Here we show that for any nonzero bounded change F (S), dimS = oo,
its range, Rangef) is a convex set.

In what follows letm be a bounded charge oR(S), dimS= oco. Let
0 < k =m(S) and definer, u € R as follows:

A =inf{m(A): A e F(9)},
w=sugm(A): Ae F(9)}.

Itcan be immediately noted that+ u = «. We prove that Range) contains
the interval &, u).

We shall need the following lemma. This is a generalization of the technique
of Alda (1980). With this technique we embédH,)(n > 1) into F(S)(dimS =
00). This was originally used to show that for any inner product sgade(S)
admits no two-valued finitely additive states. (See, for example, Chetcuti, 2002;
Dvurecenskij, 1992.) We remark that as in this case, this lemma is the state of art
in Dvuredenskij (in press) and Dvucehskij and Bak (2002). We give a sketch of
the proof for completeness.

Lemma 3.1. Let S be an inner product spaaim S = co. For any n> 1there
exists a mapping : L(H,) — F(S) such thatforall M N € L(H,),

() ¢(Hn) =S,
(i) p(M+) =p(M)*,
(iii) if M C N, theng(M v N) = ¢(M) v ¢(N).
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Proof: Letn > 1begivenandlefx :i € |} be a maximal orthonormal system
in S. We patrtition! in n disjoint subset§ly : k < n} such thatl| = |l¢| for all

k < n. Sol can be expressed in the form of disjoint uniomeélement sets,.
PutH, = sp{x :i € l,}. For everya, let T, : H, — H, be a unitary operator
(i.e., T, is bijective and(T, X, Toy) = (X, y) for anyx, y € Hy). Define the map
¢ : L(Hp) — F(S) by ¢(M) = v, (T, M). Itis not a difficult task to check that
satisfies (i), (ii), and (iii) of Lemma 3.1. O

Corollary3.2. (1)Ifmisacharge on ES)then mo ¢ defines a charge on(Hp).
(2) For any inner product space 8im S > 3, F(S) admits no two-valued charges.

Lemma 3.3. Letm be acharge on (5). Let Ac F(S)and let{a :i € |} bea
maximal orthonormal systenin A. Then nfA) = m(\/,, [a]).

Proof: We certainly have that
(spla i e 1N =\/lal c A
iel
It is not difficult to verify that
m(a) = m( \/1a1) + m(spta i < 1)* 0 A)

iel

= m( Vi)

iel

For anyA € F(S), define
F(O,A) ={BeF(9:BcCA}
F(A) = {B c A: Bt+tAa = B},
Observe that (0, A) and F(A) are complete lattices with and {0} being the

largest and smallest elements respectively. In the following, let us agree to denote
by Vv, VE(0,a), andv g the joins taken irF(S), F(0, A), andF (A) respectively.

Proposition 3.4. Let S be any inner product space andA=(S). We have
(i) F(A) C F(0, A).
(i) If F(E) = F(0, E)forall E € F(A), then A is complete.
(i) Letmbeachargeon@).If{B; :i € |} is any system of subspaces in
F(A), then n{\/ F) Bi) = m(\/i, Bi). In particular, the restriction of
m on HA) defines a charge.

4denoted by MONS in short.
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Proof: For the proof of (i) and (ii), the reader is referred to Chetcuti and
Dvurecenskij (submitted). We prove statement (iii). KBt : i € |} € F(A). Since
F(A) c F(0, A), we have thak/; .y B C \/F<g) B;. Moreover,

\/ B = <\/ Bi>lAlA,

F(A) ieN
ieN

and therefore,

m(\/ Bi> = m(\/ Bi>.
iFég\!) ieN
From this it is clear that the restriction of every chamgeon F(A) defines
a charge. O

Lemma 3.5. Let m be a bounded charge on($), dim S = oo, and let n{s) =
x > 0. Then, the intervd0, x] C Rangeifn).

Proof: Let M e F(S) such that dimM = dim M+ = dim S. Without any loss
of generality we may assume tha(M) > m(M~). Thenm(M) > 5- Letng =
max{2, W} and let{x; :i € 1} beaMONS inM. Then by Lemma 3.3n(M) =
m(Vo [x]). Let{yi :i € 1} be a MONS inM+. We can partitiorl into no — 1
disjoint subset$ly : k < ng — 1} such that[] = ||, k < ng — 1.

Using the usual technique, we can therefore express the isethe form
of a disjoint union of g — 1)-element set$,. Moreover, there is a one-to-one
correspondence between thdsé and 1. So we can replace the indexingn
{xi ;i € l}witha. PutH, =sp{X, U{yi :i € l,}}. Fixy € Hy,, [lyll = Land let
To : Hnh, & H, be a unitary operator such theity = x,. Define¢ : L(H,,) —
F(S) by (M) =V, (T,M) as in Lemma 3.1. It is clear that([y]) = \/;, [Xi].
Sincemis bounded, the state o ¢ induced orlL (H,,) is also bounded. In addition,
mo ¢([y]) = m(M). There existsu € H,, such thatmo ¢([u]) < n£0 <m(M)
and therefore by Proposition 2.3 it follows thgt[m(M)] C Rangefn). Then
Unsnol 5, M(M)] C Rangefn), i.e., [0,m(M)] C Rangef). If m(M) > «, then
obviously we have [x] C Rangefn). If m(M) < «, then by considering com-
plements, we conclude that K], ¢ Rangefn). O

As a corollary we have the original result by Dvoesskij and Rik (2002).

Corollary 3.6. Let s be a finitely additive state on(§), dimS= oco. Then
Range$) = [0, 1].

Lemma 3.7. Let m be a bounded charge on{($), dimS = oo, and let (S) =
k > 0. For any Ac F(S), we have eithef0, m(A)] ¢ Rangein), or [m(A), 0] C
Rangefn), (depending on the sign of (#A)).
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Proof: When dimA = oo, result follows immediately from the fact that the
restriction ofm on F(A) is a bounded charge and from Lemma 3.5.

So we assume that dil< co. If ¥ =0, then, since dim\* = oo, we
have either fn(A'), 0] ¢ Rangef) or [0, m(A1)] c Rangefn). Sincem(A) =
—m(Al), we have [0m(A)] c Rangef) or [m(A), 0] C Rangefn). Let us now
consider the case when> 0. There are three possibilities: ()0 m(A) < «, (i)
0< « < m(A),and(iiim(A) < 0< «.Case (i) followstrivially since [Om(A)] C
[0, k] c Rangefn). For case (ii), we haven(A') =k —m(A) < 0, so that
[m(AL), 0]  Rangein), which yields k, m(A)] ¢ Rangefn), and consequently.

[0, m(A)] = [0, k] U [«, m(A)] C Rangefn)

In case (iii), we haven(At) = x — m(A) > 0, so that [Om(A})] C Rangefn),
which gives n(A), 0] ¢ Range(n).
We now give the main result of this section. O

Theorem 3.8. Letm be a bounded charge or{$), dim S = co. ThenRange(n)
is a convex set containin., 1), wherex =infim(A): A€ F(9} and u =
sugm(A) : A e F(9)}.

We note that the authors do not know whether in Theorem 3.8, €
Rangefn).

In the following example we show that our assumption thas bounded is
in fact indispensable. Indeed, we show that not evenR{&)-boundednessis
sufficient to guarantee that the Rangg(s uncountable.

Proposition 3.9. For every separable Hilbert space idim H = oo, there exists
an unbounded chargegon L(H) which is B(H)-bounded andRangefng) C Q.

Proof: Let H, dimH = oo, be a separable Hilbert space. In Kalmbach (1986)
it was shown that there is a stateon L(H) which vanishes on all the finite
dimensional subspaces &f. By considering the Hamel functiop described

in Proposition 2.5, we define a chargg = ¢ o s on L(H) which vanishes on
all finite dimensional subspaces bf. From the definition ofp it is clear that

Rangeno) C Q. O

Corollary 3.10. Let m be a non-zero charge on($), dimS=oco. If
[Range)| < Ro, then m is unbounded.

5We say that a charga is Po(S)-bounded when the s@im(M)| : M c S, dimM < oo} is bounded.



1936 Chetcuti and Dvureenskij

4. SIGN-PRESERVING CHARGES ON F(S), dim S = oo, SATISFYING
THE JAUCH-PIRON PROPERTY

A chargemon F(S) is said to satisfy theign-preserving propertfor we say
thatmis a sign-preserving charge) if for any countable collectn: i € N} of or-
thogonal finite dimensional subspace§&iff) satisfyingm(N;) > 0, (respectively,
m(N;) < O)foralli e N, itfollows thatm(\/; ) < 0, (respectivelyn(\/; .y Ni) <
0). Itis easy to verify that i is sign-preserving anah(N;) > Oforalli € N, then

m(\/ Ni) > Zm(Ni) > 0.
ieN ieN

It is clear that every completely additive signed measnien F(S) and ev-
ery positive (negative) charge satisfies the sign-preserving property b=t a
separable infinite-dimensional Hilbert space andietandm, be two different
finitely additive states on the orthomodular latticeH)(= F(H)) of closed sub-
spaces of such that they vanish on all the finite dimensional subspaces(sée
Kalmbach, 1986). Them = m; — m; is a non-zero charge on(H) satisfying
the sign-preserving property, andis neither positive (negative) nor completely
additive. Moreover, if we lep denote the discontinuous additive functional defined
in Proposition 2.5, thep o mis an unbounded sign-preserving charge.

On the other hand, lét be a separable Hilbert space withan ONB : n €
N}. Define the state ob(H) by my(M) = 3 72 ; 2 (PmXq, Xa), M € L(H), and
letm, be any finitely additive state dn(H) vanishing on all the finite dimensional
subspaces dfl. Thenm = m; — m; is a bounded charge dr(H) not satisfying
the sign-preserving property. Indeed, Mt=\/_,[x,]. Then for anyn > 2,
M([X.]) = & butm(M) =3 —1=—1.

A chargem on F(S) is said to satisfy thdauch-Pironproperty if for any
collection{x; : i € I} of pairwise orthogonal vectors satisfyimg([x;]) = 0, we
havem(\/,,[x]) = 0.

In the previous section we have characterized the range of bounded charges
on F(9), dimS = co. Although no such characterization seems to be possible for
unbounded charges (as hinted out in Proposition 3.9), we shall show that the range
of sign-preserving charges satisfying the Jauch-Piron property is always convex.

We say that an elemer € F(S) is positive (negativg with respectto a
chargem if m(N) > 0 (m(N) < 0) for anyN € F(0, A).

Lemma4.1. Letm be a sign-preserving charge or§3}.

() If {x :i € 1} is a system of pairwise orthogonal unit vectors of S, then
thesety ={i € | : m([x]) # O} is countable.

(i) If, in addition, m satisfies the Jauch-Piron property and A (S) such
that m([x]) < Ofor all x € A, then m is negative on A.
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Proof:

(i) Let Ng ={i €| : m([x]) < —1}. Foreveryk e N, k > 2, let
Nk = {i el: —& <=m([x]) < —%}
Similarly, letP; = {i € | : m([x]) > 1}, and
A={icr iz mi > ¢

It is not difficult to check that because of the sign-preserving property
of m, [Nk, |Px| < oo for all k € N. This implies thatlg = (J,cy Nk U
Uken Px is countable.

(i) Let N € F(0, A) and let{x; :i € |1} be a MONS inN. By (i) above, the
setl’ ={i € | : m([x;]) < O} is countable. Then we have

mn) = m( \/ix1) = m( \/ix1) +m( \/ 1x1) <

iel iel’ iel\l’

by the Jauch-Piron and sign-preserving properties. -

Lemma 4.2. Letm be a sign-preserving charge orfS}, dim A = oo such that
m(A) < 0. For everye > 0, there exists Ee F(0, A) such that

(i) E** € Po(A);
(i) m(E) < m(A),
(i) m(B) < ¢ forall B C Py(E).

Proof: The proof of this lemma resembles the proof of the Hahn-decomposition
theorem (1988). (Here we do not have thedditivity of m, however, we shall
see that with some “weak” form of additivity it is still possible to “do the trick.”)
Lete > Obe given. Iim(B) < e forall B € Py(A), then we puE = Aand we are
done. Otherwise, leB; € Py(A) such thaim(B;) > €. PutA; = Bf’* e F(A) C
F(0, A). We note tham(A;) = m(A) — m(By) < m(A) — e < m(A). If m(B) <

€ for all B € Py(A;) then Ay is T" subspace. If not, there exidds € Py(Ar)
satisfyingm(By) > €. LetA; = B,™ € F(A;) C F(0, A). Itis easy to check that
m(Az) < m(A) and therefored, # {0}. Continuing like this, we can either after
steps arrive at some infinite dimensional subspgce B A1 satisfyingm(A;) <
m(A) —ie andm(B) < e for all B € Py(A)), or else, for contradiction, we define
a nested sequence of subspages Ag D Ay D Ay D ---, where Ay # A; for

i > j.We also have the sequend® : i € N} of orthogonal subspaces Py(A)
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such tham(B;j) > € andA** = By V() . .. VE(a) Bi. Then we have

ieN

=m(A) — m(\/ Bi>

F(A)
ieN

o) oy

F(A) F(A)
i<N i>N

< m(A) —ne foralln e N,

which is the required contradiction. O

Proposition4.3. Letm be a sign-preserving charge 003} satisfying the Jauch-
Piron property. If Ae F(S) is a subspace such that(#) < 0, then there exists
M € F(0, A), which is negative with respect to m, andivh) < m(A).

Proof: According to Proposition 4.1, there is a finite dimensional subsphce
of A such tham(N) < 0.

Either A is negative with respect tm or it contains a finite dimensional
subspace of positive measure. In the second case; le¢ the smallest integer
such that there exists a finite dimensional subspdce A with m(N,) > n—11
Either NfA is of negative measure, or we repeat the first step.

Continuing successively, lek be the smallest integer for which there exists

a finite dimensional subspadé C (\/;y_; N;)1# such tham(Ny) > +. Now,

we either finish after finitely many steps or find an infinite sequgTwce of finite
dimensional subspacelj : i € N}. Letus putM = (\/,_y Ni)*. For any integer

k > 1, we have

Lala
m(A) = m(M) + m((\/ Ni) )

ieN
= m(|v|)+m<>é Ni)
= m(M)+m<i\>{ Ni> +§m(Ni)

> m(M)+ > m(N;) > m(N)+Z%.

i<k i<k

Therefore, the serieEeNn—f < 00, andn; — oo. ltis clear thatm(M) < m(A).
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To show that A is negative with respect ton, choosee > 0 Since
n — oo, we can find a sufficiently large integer such that = < e.
Because of the inclusioM C (\/1<| N;j)*4, N cannot contain any f|n|te di-
mensional subspace with measure greater t}l‘%\p which is smaller thare.
ConsequentlyN does not contain any finite dimensional subspaces with mea-
sure greater than The arbitrariness of entails thatN cannot contain any finite
dimensional subspace of positive measure, and it has to be negative with respect
tom. O

Lemma 4.4. Let m be a sign-preserving charge on(3 satisfying the
Jauch-Piron property. Let A& F(S), dimA =o0co0. Then we have either
[m(A), 0] c Rangefn), or [0, m(A)] C Rangefn), (depending on the sign
of m(A)).

Proof: We canassume thai(A) < 0, since resultis obviously true when{A) =
0, and the case whem(A) > 0 would then follow by symmetry. By applying
Lemma 4.2 onA with ¢ =1, we getA=B; & B::*, where dimB; < oo and
m(B) < 1forall B € Po(By"). Let Ay = B;™*. Apply again the result of Lemma
4.2 on A; with € = % Then A1 =B, @ B;Al. Continuing like this, we get a
sequence of orthogonal finite dimensional subspd&sB,, ...} in A and a
nested sequenok D> A; D A; D --- such tham(B) < % for all B € Py(Ax) and
m(Ax) < m(A). We have to consider two possibilities.

(i) There existdN € N such that for alh > N, B, = 0.
(ii) Forall N € N there exists1 > N such thatB, # O.

Assume that we have case (i). This would imply that for 8lle
Po(An), we havem(B) < 0 and therefore by Corollary 4.m(B) < 0 for any
B € F(AN). This implies thaim is bounded orf (Ay) and thus by Lemma 3.5,
it follows that [m(An), 0] C Rangefn). This implies that f(A), 0] C
Range(n).

In the other case, we have an infinite sequdise: i € N} of non-zero finite
dimensional subspaces satisfyim¢B) < —1- 7 forall B € Py(By ) andm(By,) >
1 . We also have aninfinite sequence of strlctly nested subspacas, 2 An,2D - -
such thatA,_, = B, @& A,,. By nothing that

Ayt =\/ B,

F(A)
j<i
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it can be seen that

m(ﬂ A,

ieN

) = m(A) — m(
=m(A) — (

< m(A) -
i<k

Chetcuti and Dvureenskij

\/ B

)

FA)

\/ Bnl) ( \/ Bni)

g o

1

- forallk € N. (4.1)
i

Itis evidentthad ", .\, & < co. Moreoverm(B) < Oforall B € Po([;cy An)-
If dim (), .y An, = 00, then we would argue in the same manner as we did in case
(i) above and conclude immediately that(jA), 0] ¢ Rangefn). So we assume
that dim(); .y An, = k. (Note that); .y Ay, # 0 Let A = m(A) — m((); oy An))-
By Eq. (4.1),A > 0. Since)_; n_l. < o0, there existgy € N such that

jot+k—1
Jo+ 1

A
M2
Moreover, it is not difficult to check that for alle {jo, ...
Xi € By such that

, jo + Kk}, there exists

0< m(x]) < nil
Let

(1A

ieN

)

)

H = [on] &) [Xj0+1] ®---D [on+k] D (

(

(1A

ieN

The dimension oH is 2k + 1 < 3 and

jot+k 1
m(H) < Z—+m

i=jo Mi-1

<A+m
2

< m(A).

() A

ieN

)

In addition, sinceH C Ay, ,, we havem(B) < n,— for all B € L(H). Thus
m restricted onL(H) is a bounded charge. Moreover, by the choice ofxfe
it is clear that we do not have([x]) = 5 for all x € H. PutC = ),y A,
and D = [Xjo+1] @ - - - ® [Xjo+k]. By Proposition 2.4, we havarf(C), m(D)] C
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Rangefn), which implies that fn(A), 0] ¢ Rangefn). This completes the proof
of Lemma 4.4. O

Theorem 4.5. Let m be a sign-preserving charge or3y satisfying the Jauch-
Piron property wheredim S = co. ThenRangefn) is convex and contains the
interval (A, u), wherex, u € R U {—o0, +00} are defined as = inf{m(A) : A e
F(9)} andu = sugm(A) : A e F(S)}.

Proof: UsingLemma4.4, we canprove, inasimilarway asinLemma 3.7, thatfor
any A € F(S), we either haverp(A), 0] c Rangefn), or [0, m(A)] C Rangein),
(depending on the sign ofi( A)). O

We conclude this paper with some remarks. We know thet(8) admits a
completely additive signed measure, ti&is topologically complete. We still do
not know whetheF (S), for anincompletes, admits a non-zero charge. In Chetcuti
and Dvureénskij (submitted), it has been proved that any Jordan char§€9n
dim S > 3, canbe uniquely expressed as a sug m; + my,, wherem; is aPy(9)-
regular mapping of (S) — Ris Py(S)-regularifforanyM € F(S)andany > 0,
we can find a finite dimensional subspa&¢ef M such thatm(M) — m(N)| < €.)

The questiorf F (S) admits a non-zero charge, does it imply that S is complete?
has not been answered yet. Here we #9k(S) admits a non-zero sign-preserving
charge satisfying the Jauch-Piron property, does it follow that S is complete?
would be interesting to know whether this “mild property” of a charge is enough
to guarantee the completenessSof

ACKNOWLEDGMENT

The authors acknowledge the support of the Grant No. VEGA 2/3163/23 SAV,
Bratislava, Slovakia.

REFERENCES

Alda, V. (1980). On 0-1 measures for projectokplik. matem25, 373-374.

Amemiya, J. and Araki, H. (1966). A remark on Piron’s papgsearch for Mathematical Sciences
Publications (Kyoto). Ser A2, Koyoto Univ., 423-427.

Chetcuti, E. (2002)Completeness Criteria for Inner Product SpaddSc Thesis, University of Malta.

Chetcuti, E. and DvueEnskij, A. (2003) A finitely additive state criterion for the completeness of
inner product spaces etters in Mathematical Physi@&b (in press).

Dvurecenskij, A. (1992)Gleason’s Theorem and Its Application€uwer, Dordrecht, Ister Science
Press, Bratislava.

Dvureenskij, A. (2003). States on subspaces of inner product spaces with the Gleason property,
International Journal of Theoretical Physid®, 1393-1401.



1942 Chetcuti and Dvureenskij

Dvurecenskij, A. and Rik, P. (2002). On states on orthogonally closed subspaces of an inner product
spaceletters in Mathematical Physi&2, 63—70.

Dvurecenskij, A., Neubrunn, T., and Pulmanr@o\s. (1990). Finitely additive states and completeness
of inner product spaceBpundation Physicg0, 1091-1102.

Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert 3pawcel of Mathematical
Mechanics5, 885-893.

Halmos, P. R. (1988Measure TheorySpringer-Verlag, New York.

Hamel, G. (1905). Eine Basis alen Zahlen und die unstetigesugen der Funktionalgleichung:
f(x+y) = f(xX)+ f(y), Mathematical Analysi§0, 459—-462.

Hambhalter, J. and BK, P. (1987). A completeness criterion for inner product sp&téketin of London
Mathematical Soceit§9, 259-263.

Kalmbach, G. (1986yleasures and Hilbert LatticeVorld Science Publishing Company, Singapoore.

Kreyszig, E. (1986)Introductory Functional Analysis with ApplicationgViley Classics Library,
Canada.

Maeda, F. and Maeda, S. (1970heory of Symmetric LatticeSpringer-Verlag, Berlin.

Pk, P. and PulmannayS. (1991)Orthomodular Structures as Quantum Logiksuwer, Dordrecht,
The Netherlands.

Varadajan, V. S. (1985§zeometry of Quantum Theqi$pringer-Verlag, New York Inc.



