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It is still an open question whether the complete latticeF(S) of all orthogonally closed
subspaces of an incomplete inner product spaceSadmits a nonzero charge. A negative
answer would result in a new way of completeness characterization of inner product
spaces. Many partial results have been established regarding what has now turned to
be a highly nontrivial problem. Recently, in Dvureˇcenskij and Ṕtak (Letters in Math-
ematical Physics, 62, 63–70, 2002) the range of a finitely additive states on F(S),
dim S=∞, was shown to include the whole interval [0, 1]. This was then generalized
in Dvurečenskij (International Journal of Theoretical Physics, 2003) for general inner
product spaces satisfying the Gleason property. Motivated by these results, we give a
thorough investigation of the possible ranges of charges onF(S), dimS≥ 3. We show
that if the nonzero chargem is bounded, then for infinite dimensional inner product
spaces, Range(m) is always convex. We also show that this need not be the case with
unbounded charges. Finally, in the last section, we investigate the range of charges on
F(S), dimS=∞, satisfying the sign-preserving and Jauch–Piron properties. We show
that for such measures the range is again always convex.

KEY WORDS: Hilbert space; inner product space; orthogonally closed subspaces;
completely additive signed measures; charges; sign-preserving property; Jauch–Piron
property.

1. INTRODUCTION

Let H be a separable Hilbert space, dimH ≥ 3, and letL(H ) be the complete
quantum logic consisting of closed subspaces ofH . The cornerstone of quantum
logic theory onL(H ) is Gleason’s theorem (Dvureˇcenskij, 1992; Gleason, 1957;
Ṕtak and Pulmannov´a, 1991; Varadajan, 1985), which asserts that for every state
s on L(H ) there exists a unique Hermitian trace operatorT on H with unit trace,
such that

s(M) = tr(TPM ), M ∈ L(H ),
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wherePM denotes the orthoprojection ofH ontoM . This fundamental and highly
nontrivial result is of crucial importance for the probabilistic theory ofL(H ) and
has many generalizations and applications (see, for example, Dvureˇcenskij, 1992).
One of the fundamental consequences of Gleason’s theorem related to the hidden
variable hypothesis in quantum mechanics is the nonexistence of two-valued states
on L(H ) whereH is any Hilbert space of dimension at least 3 (see Alda, 1980;
Chetcuti, 2002; Dvureˇcenskij, 1992).

In what follows, letSbe an inner product space (real, complex, or quaternion)
and let〈·, ·〉 be the inner product onS. For each subsetA ⊂ S let A⊥ = {b ∈ S :
〈a, b〉 = 0 for all a ∈ A}. Moreover for any two subspacesA ⊂ B of S, we denote
A⊥ ∩ B by A⊥B . Denoted byF(S) the set of allorthogonally closed subspaces of
S, that is

F(S) = {M ⊂ S : M⊥⊥ = M},
and letP0(S) be the family of all the finite dimensional subspaces ofS. Then (see,
for example Maeda and Maeda, 1970),F(S) is a complete lattice, where for the
meet we have ∧

i∈I

Mi =
⋂
i∈I

Mi ,

while for the join we have∨
i∈I

Mi =
(

sp

(⋃
i∈I

Mi

))⊥⊥
.

We recall thatF(S) does not have to be orthomodular,3 in fact Amemiya
and Araki (1966) proved the following algebraic criterion for the (topological)
completeness of an inner product spaceS; an inner product spaceS is complete if
and only if F(S) is orthomodular. In the sequel, unless otherwise stated, we shall
not assume the completeness ofS.

A completely additive signed measureon F(S) is a mappingm : F(S)→ R
such that, if{Mi : i ∈ I } is any collection of orthogonal elements inF(S) then

m

(∨
i∈I

Mi

)
=
∑
i∈I

m(Mi ). (1.1)

A charge mon F(S) is a mappingm : F(S)→ R such that eq. (1.1) holds only
for finite orthogonal collections. A states is a σ -additive measure such that its
range lies in the interval [0, 1] ands(S)= 1. (A finitely additive state is defined
analogously.)

Since Hilbert spaces form a proper subfamily of the class of inner prod-
uct spaces (over the same field), it is indispensable to have completeness criteria

3 F(S) is said to be orthomodular if for everyA, B ∈ F(S), A ⊂ B, we haveB = A∨ (A⊥ ∧ B).
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that characterize the complete among the incomplete spaces. The first measure-
theoretic completeness criterion for inner product spaces was presented by Hamhal-
ter and Pt´ak in 1986 (Homhalter and Pt́ak, 1987). It was proved that for a separable,
real, incomplete inner product spaceS, F(S) admits noσ -additive states. This re-
sult was then generalized and many new measure-theoretic completeness criteria
were derived (Dvureˇcenskij, 1992). However, it is still unknown whetherF(S)—
for an incomplete inner product spaceS—admits any finitely additive states. We
have only partial results concerning this problem (see Chetcuti and Dvureˇcenskij,
2003; Dvureˇcenskijet al., 1990). Recently, it has been proved in Dvureˇcenskij
and Ṕtak (2002) that ifS is any inner product space of infinite dimension ands is
any finitely additive state onF(S) then Range(s)= [0, 1]. (This was then extended
in Dvurečenskij (in press) to all generalized inner product spaces satisfying the
“Gleason Property.”)

Motivated by these results, we study the possible ranges of charges onF(S).
We shall see that when the charge is bounded, its range is always convex. We shall
also show that the situation can be very different for unbounded charges. Finally,
sign-preserving charges onF(S), dimS=∞, are considered and we prove that for
such a measure satisfying the Jauch–Piron property the range is also a convex set.

2. CHARGES ON F(S) WHEN S= Hn (n≤≤ 3)

In this section we shall investigate the possible range of a chargem on L(Hn)
wheren is at least 3. If we letκ = m(Hn), and denote by [x] the one-dimensional
subspace inHn spanned byx, we show that ifm is bounded, then we either have
m([x]) = κ

n for all x ∈ Hn (and therefore Range (m) = {0, κn , 2κ
n , . . . , κ}), or else

there exista, b ∈ R, a < b, such that [a, b] ⊂ Range(m).
The following is Gleason’s theorem for bounded charges onL(Hn). (See, for

example Dvureˇcenskij (1992), Theorem 3.2.16.)

Theorem 2.1. For every bounded charge m on L(Hn), n ≥ 3, there is a unique
Hermitian trace operator T on Hn such that

m(M) = tr(TPM ), M ∈ L(Hn).

The following is a standard result in Functional Analysis. The reader may
need to look at any book on Functional Analysis, for example, Kreyszig (1986).

Proposition 2.2. Let Hn be an n-dimensional Hilbert space. Let T be a Her-
mitian trace operator on Hn. If λ1 ≥ λ2 ≥ · · · ≥ λn, are the eigenvalues of T
corresponding to eigenvectors x1, x2, . . . , xn, then we have

λ1 = max
x 6=0
〈T x, x〉 and λn = min

x 6=0
〈T x, x〉.
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Moreover

λi = max
06=x∈Yi

〈T x, x〉, where Yi = sp{x1, . . . , xx−1}⊥.

Although a proper extension, the following result is analogous to that in
Dvurečenskij and, Ptak (2002).

Theorem 2.3. Let m be a nonzero bounded charge on L(Hn)(n ≥ 3) and let0≤
κ = m(Hn). We either have that m([x]) = κ

n for all x ∈ Hn (and thereforeRange
(m)={ κn , 2κ

n , . . . , κ}), or else there exist a, b ∈ R, a < b, such that[a, b]⊂Range
(m). In addition,[minx 6=0 m([x]), maxx 6=0 m([x])] ⊂ Range(m).

Proof: It is clear that if we definem : L(Hn)→ [0, κ] by m([x]) = κ
n for all

x ∈ Hn, thenm is a positive charge onL(Hn). We shall call this charge the trivial
discrete charge onL(Hn). Suppose that this is not our measure, that is, letλ < µ

such thatm([x]) = λ andm([y]) = µ wherex, y ∈ Hn. By Theorem 2.1, there
exists a unique Hermitian trace operatorT on Hn such thatm(M) = tr(TPM ) for
any M ∈ L(Hn). The spectral theory of trace Hermitian operators yields that

m(M) =
∑
i≤n

λi 〈PM xi , xi 〉, M ∈ L(Hn),

whereλi = m([xi ]) = 〈T xi , xi 〉 is the eigenvalue ofT corresponding to the proper
eigenvectorxi . It is evident that

∑
i≤n m([xi ]) = κ and therefore ifm([xi ]) =

m([xj ]) for all i < j ≤ n, thenm is the trivial discrete measure defined above. So
we can pickxi1, xi2 from {xi : i ≤ n} such thatλi1 = m([xi1]) < m([xi2]) = λi2.
Let

y = xi1 cosφ + xi2 sinφ, φ ∈
[
0,
π

2

]
.

Then

m([y]) =
∑
i≤n

λi |〈y, xi 〉|2

= λi1 cos2 φ + λi2 sin2 φ

= a cos2 φ + bsin2 φ,

where we have identifiedλi1 andλi2 with a andb respectively. It is clear that we
have [a, b]⊂Range(m). ¤

Proposition 2.4. Let m be a nonzero bounded charge on L(Hn), (n ≥ 3), not
equal to the “trivial discrete charge.” If a= m(A) < m(B) = b, where A, B ∈
L(Hn), A⊥ B, dim A = dim B, then[a, b]⊂Range(m).
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Proof: By Gleason’s Theorem 2.1. there exists an orthonormal set of vectors
{xi : i ≤ n} and a set{λi : i ≤ n} of real numbers such that

m(M) =
∑
i≤n

λi 〈PM xi , xi 〉, M ∈ L(Hn).

Let A = [a1] ⊕ [a2] ⊕ · · · ⊕ [ap] and B = [b1] ⊕ [b2] ⊕ · · · ⊕ [bp] be two or-
thogonal subspaces such thata = m(A) < m(B) = b. (We take{aq : q ≤ p} and
{bq : q ≤ p} to be normalized.) For everyq ≤ p, we define

yq = aq cosφ + bq sinφ, φ ∈
[
0,
π

2

]
,

and putY = [y1] ⊕ [y2] ⊕ · · · ⊕ [yp]. Then

m(Y) =
∑
i≤n

λi 〈PYxi , xi 〉

=
∑
i≤n

λi

∑
q≤p

|〈yq, xi 〉|2

=
∑
q≤p

∑
i≤n

λi |〈aq, xi 〉 cosφ + 〈bq, xi 〉 sinφ|2

= m(A) cos2 φ +m(B) sin2 φ

+ cosφ sinφ
∑
q≤p

∑
i≤n

λi {〈aq, xi 〉〈xi , bq〉 + 〈bq, xi 〉〈xi , aq〉}

= m(A) cos2 φ +m(B) sin2 φ + γ cosφ sinφ,

whereγ ∈ R. By elementary real analysis theory, it follows that [a, b]⊂Range(m).
This completes the proof. ¤

We now show that the condition “bounded” in Theorem 2.3 and Proposition
2.4 is not superfluous. Indeed we exhibit an unbounded chargem0 on L(Hn) such
that no interval inR is included in its range.

Proposition 2.5. For any n≥ 2, there exists an unbounded charge m0 on L(Hn)
such thatRange(m0) is countable and infinite.

Proof: Let n = 2. Take a sequence of one-dimensional subspaces{Mn : n ∈ N}
which contains no orthogonal pairs. Define a mappingm0 : L(H2)→ R via

m0(M) =


0 if M = {0},
1 if M = H2,
n+ 1 if M = Mn,
−n if M = M⊥n ,



P1: FHK/ILT

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472799 October 22, 2003 9:43 Style file version May 30th, 2002

1932 Chetcuti and Dvurečenskij

and on other one-dimensional subspacesM, M⊥ choosem0(M) ∈ {2,−1} such
thatm0(M)+m0(M⊥) = 1. Thenm0 is an unbounded charge and Range(m0) = Z.

For the case whenn ≥ 3, we make use of the result of Hamel (1905).
This states that there exists a discontinuous additive functionalφ : R→ R. He
proved that there exists a subsetV = {si : i ∈ I } ⊂ R such that every real num-
ber can be uniquely represented asr = 6i∈I0βi si where I0 is a finite subset of
I , si ∈ V andβi ∈ Q. It is clear thatV contains at least one irrational numbers1.
(In fact, V includes at most one rational number.) If we putφ(6i∈I0βi si ) = β1,
thenφ is the functional in question. For anyx ∈ Hn, ‖x‖ = 1, define the map
m0 : L(Hn)→ R by m0 = φ ◦ sx wheresx is the Gleason state onL(Hn) de-
fined bysx(M) = 〈PM x, x〉, M ∈ L(Hn). It can be seen thatm0 is a charge on
L(Hn) and since Range(m0) ⊂ Q, it follows that Range(m0) is countable. In-
deed, it can be proved (see Dvureˇcenskij, 1992, Proposition 3.2.4) thatm0 is
unbounded. ¤

3. BOUNDED CHARGES ON F(S) WHEN dim S=∞
Here we show that for any nonzero bounded chargem on F(S), dimS= ∞,

its range, Range(m) is a convex set.
In what follows let m be a bounded charge onF(S), dimS= ∞. Let

0≤ k = m(S) and defineλ, µ ∈ R as follows:

λ = inf{m(A) : A ∈ F(S)},
µ = sup{m(A) : A ∈ F(S)}.

It can be immediately noted thatλ+ µ = κ. We prove that Range(m) contains
the interval (λ, µ).

We shall need the following lemma. This is a generalization of the technique
of Alda (1980). With this technique we embedL(Hn)(n ≥ 1) into F(S)(dim S=
∞). This was originally used to show that for any inner product spaceS, F(S)
admits no two-valued finitely additive states. (See, for example, Chetcuti, 2002;
Dvurečenskij, 1992.) We remark that as in this case, this lemma is the state of art
in Dvurečenskij (in press) and Dvureˇcenskij and Ṕtak (2002). We give a sketch of
the proof for completeness.

Lemma 3.1. Let S be an inner product space,dim S= ∞. For any n≥ 1 there
exists a mappingφ : L(Hn)→ F(S) such that for all M, N ∈ L(Hn),

(i) φ(Hn) = S,
(ii) φ(M⊥) = φ(M)⊥,

(iii) if M ⊂ N, thenφ(M ∨ N) = φ(M) ∨ φ(N).
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Proof: Let n ≥ 1 be given and let{xi : i ∈ I } be a maximal orthonormal system
in S. We partitionI in n disjoint subsets{Ik : k ≤ n} such that|I | = |Ik| for all
k ≤ n. So I can be expressed in the form of disjoint union ofn-element setsIα.
Put Hα = sp{xi : i ∈ Iα}. For everyα, let Tα : Hn→ Hα be a unitary operator
(i.e., Tα is bijective and〈Tαx, Tαy〉 = 〈x, y〉 for any x, y ∈ Hn). Define the map
φ : L(Hn)→ F(S) by φ(M) = ∨α(TαM). It is not a difficult task to check thatφ
satisfies (i), (ii), and (iii) of Lemma 3.1. ¤

Corollary 3.2. (1) If m is a charge on F(S) then m◦ φ defines a charge on L(Hn).
(2)For any inner product space S,dim S≥ 3, F(S) admits no two-valued charges.

Lemma 3.3. Let m be a charge on F(S). Let A∈ F(S) and let{ai : i ∈ I } be a
maximal orthonormal system4 in A. Then m(A) = m(

∨
i∈I [ai ]).

Proof: We certainly have that

(sp{ai : i ∈ I })⊥⊥ =
∨
i∈I

[ai ] ⊂ A.

It is not difficult to verify that

m(A) = m

(∨
i∈I

[ai ]

)
+m((sp{ai : i ∈ I })⊥ ∩ A)

= m

(∨
i∈I

[ai ]

)
.

¤

For anyA ∈ F(S), define

F(0, A) = {B ∈ F(S) : B ⊂ A},
F(A) = {B ⊂ A : B⊥A⊥A = B}.

Observe thatF(0, A) and F(A) are complete lattices withA and {0} being the
largest and smallest elements respectively. In the following, let us agree to denote
by∨, ∨F(0,A), and∨F(A) the joins taken inF(S), F(0, A), andF(A) respectively.

Proposition 3.4. Let S be any inner product space and A∈ F(S). We have

(i) F(A) ⊂ F(0, A).
(ii) If F (E) = F(0, E) for all E ∈ F(A), then A is complete.
(iii) Let m be a charge on F(S). If {Bi : i ∈ I } is any system of subspaces in

F(A), then m(
∨

F(A)
i∈I

Bi ) = m(
∨

i∈I Bi ). In particular, the restriction of
m on F(A) defines a charge.

4 denoted by MONS in short.
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Proof: For the proof of (i) and (ii), the reader is referred to Chetcuti and
Dvurečenskij (submitted). We prove statement (iii). Let{Bi : i ∈ I } ⊂ F(A). Since
F(A) ⊂ F(0, A), we have that

∨
i∈N Bi ⊂

∨
F(A)
i∈N

Bi . Moreover,∨
F(A)
i∈N

Bi =
(∨

i∈N
Bi

)⊥A⊥A

,

and therefore,

m

(∨
F(A)
i∈N

Bi

)
= m

(∨
i∈N

Bi

)
.

From this it is clear that the restriction of every chargem on F(A) defines
a charge. ¤

Lemma 3.5. Let m be a bounded charge on F(S), dim S= ∞, and let m(s) =
κ ≥ 0. Then, the interval[0, κ] ⊂ Range(m).

Proof: Let M ∈ F(S) such that dimM = dim M⊥ = dim S. Without any loss
of generality we may assume thatm(M) ≥ m(M⊥). Thenm(M) > κ

2 . Let n0 =
max{2, κ

m(M) } and let{xi : i ∈ I } be a MONS inM . Then by Lemma 3.3,m(M) =
m(
∨

i∈I [xi ]). Let {yi : i ∈ I } be a MONS inM⊥. We can partitionI into n0− 1
disjoint subsets{Ik : k ≤ n0− 1} such that [I ] = |Ik|, k ≤ n0− 1.

Using the usual technique, we can therefore express the setI in the form
of a disjoint union of (n0− 1)-element setsIα. Moreover, there is a one-to-one
correspondence between theseIα ’s and I . So we can replace the indexingi in
{xi : i ∈ I }with α. PutHα = sp{xα ∪ {yi : i ∈ Iα}}. Fix y ∈ Hn0, ‖y‖ = 1 and let
Tα : Hn0 → Hα be a unitary operator such thatTαy = xα. Defineφ : L(Hn0)→
F(S) by φ(M) =∨α(TαM) as in Lemma 3.1. It is clear thatφ([y]) =∨i∈I [xi ].
Sincem is bounded, the statem ◦ φ induced onL(Hn0) is also bounded. In addition,
m ◦ φ([y]) = m(M). There existsu ∈ Hn0 such thatm ◦ φ([u]) ≤ κ

n0
< m(M)

and therefore by Proposition 2.3 it follows that [κ
n0

, m(M)] ⊂ Range(m). Then
∪n>n0[

κ
n , m(M)] ⊂ Range(m), i.e., [0,m(M)] ⊂ Range(m). If m(M) ≥ κ, then

obviously we have [0,κ] ⊂ Range(m). If m(M) < κ, then by considering com-
plements, we conclude that [0,k] ⊂ Range(m). ¤

As a corollary we have the original result by Dvureˇcenskij and Pt´ak (2002).

Corollary 3.6. Let s be a finitely additive state on F(S), dim S= ∞. Then
Range(s) = [0, 1].

Lemma 3.7. Let m be a bounded charge on F(S), dim S= ∞, and let m(S) =
κ ≥ 0. For any A∈ F(S), we have either[0, m(A)] ⊂ Range(m), or [m(A), 0] ⊂
Range(m), (depending on the sign of m(A)).
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Proof: When dimA = ∞, result follows immediately from the fact that the
restriction ofm on F(A) is a bounded charge and from Lemma 3.5.

So we assume that dimA < ∞. If κ = 0, then, since dimA⊥ = ∞, we
have either [m(A⊥), 0] ⊂ Range(m) or [0, m(A⊥)] ⊂ Range(m). Sincem(A) =
−m(A⊥), we have [0,m(A)] ⊂ Range(m) or [m(A), 0] ⊂ Range(m). Let us now
consider the case whenκ > 0. There are three possibilities: (i) 0≤ m(A) ≤ κ, (ii)
0 < κ < m(A), and (iii)m(A) < 0 < κ. Case (i) follows trivially since [0,m(A)] ⊂
[0, k] ⊂ Range(m). For case (ii), we havem(A⊥) = κ −m(A) < 0, so that
[m(A⊥), 0] ⊂ Range(m), which yields [κ, m(A)] ⊂ Range(m), and consequently.

[0, m(A)] = [0, κ] ∪ [κ, m(A)] ⊂ Range(m)

In case (iii), we havem(A⊥) = κ −m(A) > 0, so that [0,m(A⊥)] ⊂ Range(m),
which gives [m(A), 0] ⊂ Range(m).

We now give the main result of this section. ¤

Theorem 3.8. Let m be a bounded charge on F(S), dim S= ∞. ThenRange(m)
is a convex set containing(λ, µ), whereλ = inf{m(A) : A ∈ F(S)} and µ =
sup{m(A) : A ∈ F(S)}.

We note that the authors do not know whether in Theorem 3.8,λ, µ ∈
Range(m).

In the following example we show that our assumption thatm is bounded is
in fact indispensable. Indeed, we show that not even theP0(S)-boundedness5 is
sufficient to guarantee that the Range(m) is uncountable.

Proposition 3.9. For every separable Hilbert space H,dim H = ∞, there exists
an unbounded charge m0 on L(H ) which is P0(H )-bounded andRange(m0) ⊂ Q.

Proof: Let H , dim H = ∞, be a separable Hilbert space. In Kalmbach (1986)
it was shown that there is a states on L(H ) which vanishes on all the finite
dimensional subspaces ofH . By considering the Hamel functionφ described
in Proposition 2.5, we define a chargem0 = φ ◦ s on L(H ) which vanishes on
all finite dimensional subspaces ofH . From the definition ofφ it is clear that
Range(mO) ⊂ Q. ¤

Corollary 3.10. Let m be a non-zero charge on F(S), dim S=∞. If
|Range(m)| ≤ℵ0, then m is unbounded.

5 We say that a chargem is P0(S)-bounded when the set{|m(M)| : M ⊂ S, dim M < ∞} is bounded.
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4. SIGN-PRESERVING CHARGES ON F(S), dim S = ∞, SATISFYING
THE JAUCH–PIRON PROPERTY

A chargem on F(S) is said to satisfy thesign-preserving property(or we say
thatm is a sign-preserving charge) if for any countable collection{Ni : i ∈ N}of or-
thogonal finite dimensional subspaces inF(S) satisfyingm(Ni ) > 0, (respectively,
m(Ni ) < 0) for all i ∈ N, it follows thatm(

∨
i∈N) ≤ 0, (respectivelym(

∨
i∈N Ni ) ≤

0). It is easy to verify that ifm is sign-preserving andm(Ni ) > 0 for all i ∈ N, then

m

(∨
i∈N

Ni

)
≥
∑
i∈N

m(Ni ) > 0.

It is clear that every completely additive signed measurem on F(S) and ev-
ery positive (negative) charge satisfies the sign-preserving property. LetH be a
separable infinite-dimensional Hilbert space and letm1 andm2 be two different
finitely additive states on the orthomodular latticeL(H )(= F(H )) of closed sub-
spaces ofH such that they vanish on all the finite dimensional subspaces ofH (see
Kalmbach, 1986). Thenm= m1−m2 is a non-zero charge onL(H ) satisfying
the sign-preserving property, andm is neither positive (negative) nor completely
additive. Moreover, if we letφ denote the discontinuous additive functional defined
in Proposition 2.5, thenφ ◦m is an unbounded sign-preserving charge.

On the other hand, letH be a separable Hilbert space with an ONB{xn : n ∈
N}. Define the state onL(H ) by m1(M) =∑∞n=1

1
2n 〈Pmxn, xn〉, M ∈ L(H ), and

letm2 be any finitely additive state onL(H ) vanishing on all the finite dimensional
subspaces ofH . Thenm= m1−m2 is a bounded charge onL(H ) not satisfying
the sign-preserving property. Indeed, letM =∨n≥2[xn]. Then for anyn ≥ 2,
m([xn]) = 1

2n butm(M) = 1
2 − 1= − 1

2.
A chargem on F(S) is said to satisfy theJauch-Pironproperty if for any

collection{xi : i ∈ I } of pairwise orthogonal vectors satisfyingm([xi ]) = 0, we
havem(

∨
i∈I [xi ]) = 0.

In the previous section we have characterized the range of bounded charges
on F(S), dimS= ∞. Although no such characterization seems to be possible for
unbounded charges (as hinted out in Proposition 3.9), we shall show that the range
of sign-preserving charges satisfying the Jauch-Piron property is always convex.

We say that an elementA ∈ F(S) is positive (negative) with respectto a
chargem if m(N) ≥ 0 (m(N) ≤ 0) for anyN ∈ F(0, A).

Lemma 4.1. Let m be a sign-preserving charge on F(S).

(i) If {xi : i ∈ I } is a system of pairwise orthogonal unit vectors of S, then
the set I0 = {i ∈ I : m([xi ]) 6= 0} is countable.

(ii) If, in addition, m satisfies the Jauch-Piron property and A∈ F(S) such
that m([x]) ≤ 0 for all x ∈ A, then m is negative on A.
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Proof:

(i) Let N1 = {i ∈ I : m([xi ]) < −1}. For everyk ∈ N, k ≥ 2, let

Nk =
{

i ∈ I : − 1

k− 1
≤ m([xi ]) < −1

k

}
.

Similarly, let P1 = {i ∈ I : m([xi ]) > 1}, and

Pk =
{

i ∈ I :
1

k− 1
≥ m([xi ]) >

1

k

}
.

It is not difficult to check that because of the sign-preserving property
of m, |Nk|, |Pk| < ∞ for all k ∈ N. This implies thatI0 =

⋃
k∈N Nk ∪⋃

k∈N Pk is countable.
(ii) Let N ∈ F(0, A) and let{xi : i ∈ I } be a MONS inN. By (i) above, the

set I ′ = {i ∈ I : m([xi ]) < 0} is countable. Then we have

m(N) = m

(∨
i∈I

[xi ]

)
= m

(∨
i∈I ′

[xi ]

)
+m

( ∨
i∈I \I ′

[xi ]

)
< 0,

by the Jauch-Piron and sign-preserving properties. ¤

Lemma 4.2. Let m be a sign-preserving charge on F(S), dim A = ∞ such that
m(A) < 0. For everyε > 0, there exists E∈ F(0, A) such that

(i) E⊥A ∈ P0(A);
(ii) m(E) ≤ m(A);

(iii) m(B) ≤ ε for all B ⊂ P0(E).

Proof: The proof of this lemma resembles the proof of the Hahn-decomposition
theorem (1988). (Here we do not have theσ -additivity of m, however, we shall
see that with some “weak” form of additivity it is still possible to “do the trick.”)
Let ε > 0 be given. Ifm(B) ≤ ε for all B ∈ P0(A), then we putE = A and we are
done. Otherwise, letB1 ∈ P0(A) such thatm(B1) > ε. Put A1 = B⊥A

1 ∈ F(A) ⊂
F(0, A). We note thatm(A1) = m(A)−m(B1) < m(A)− ε < m(A). If m(B) ≤
ε for all B ∈ P0(A1) then A1 is our subspace. If not, there existsB2 ∈ P0(A1)
satisfyingm(B2) > ε. Let A2 = B

⊥A1
2 ∈ F(A1) ⊂ F(0, A). It is easy to check that

m(A2) < m(A) and thereforeA2 6= {0}. Continuing like this, we can either afteri
steps arrive at some infinite dimensional subspaceAi = B

⊥Ai−1
i satisfyingm(Ai ) <

m(A)− i ε andm(B) ≤ ε for all B ∈ P0(Ai ), or else, for contradiction, we define
a nested sequence of subspacesA = A0 ⊃ A1 ⊃ A2 ⊃ · · ·, where Ai 6= Aj for
i > j . We also have the sequence{Bi : i ∈ N} of orthogonal subspaces inP0(A)
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such thatm(Bi ) > ε andA⊥A = B1 ∨F(A) . . . ∨F(A) Bi . Then we have

m

(⋂
i∈N

Ai

)
= m(A)−m

(∨
F(A)
i∈N

A⊥A
i

)

= m(A)−m

(∨
F(A)
i∈N

Bi

)

= m(A)−m

(∨
F(A)
i≤N

Bi

)
−m

(∨
F(A)
i> N

Bi

)

< m(A)− nε for all n ∈ N,

which is the required contradiction. ¤

Proposition 4.3. Let m be a sign-preserving charge on F(S) satisfying the Jauch-
Piron property. If A∈ F(S) is a subspace such that m(A) < 0, then there exists
M ∈ F(0, A), which is negative with respect to m, and m(M) ≤ m(A).

Proof: According to Proposition 4.1, there is a finite dimensional subspaceN
of A such thatm(N) < 0.

Either A is negative with respect tom or it contains a finite dimensional
subspace of positive measure. In the second case, letn1 be the smallest integer
such that there exists a finite dimensional subspaceN1 ⊂ A with m(N1) > 1

n1
.

Either N⊥A
1 is of negative measure, or we repeat the first step.

Continuing successively, letnk be the smallest integer for which there exists
a finite dimensional subspaceNk ⊂ (

∨
i≤k−1 Ni )⊥A such thatm(Nk) > 1

nk
. Now,

we either finish after finitely many steps or find an infinite sequence of finite
dimensional subspaces{Ni : i ∈ N}. Let us putM = (

∨
i∈N Ni )⊥A. For any integer

k ≥ 1, we have

m(A) = m(M)+m

((∨
i∈N

Ni

)⊥A⊥A
)

= m(M)+m

(∨
i∈N

Ni

)
= m(M)+m

(∨
i>k

Ni

)
+
∑
i≤k

m(Ni )

> m(M)+
∑
i≤k

m(Ni ) > m(N)+
∑
i≤k

1

ni
.

Therefore, the series
∑

i∈N
1
ni

< ∞, andni →∞. It is clear thatm(M) < m(A).
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To show that A is negative with respect tom, chooseε > 0. Since
ni →∞, we can find a sufficiently large integeri such that 1

ni−1 < ε.
Because of the inclusionM ⊂ (

∨
j≤i Nj )⊥A, N cannot contain any finite di-

mensional subspace with measure greater than1
ni−1 which is smaller thanε.

Consequently,N does not contain any finite dimensional subspaces with mea-
sure greater thanε. The arbitrariness ofε entails thatN cannot contain any finite
dimensional subspace of positive measure, and it has to be negative with respect
to m. ¤

Lemma 4.4. Let m be a sign-preserving charge on F(S) satisfying the
Jauch-Piron property. Let A∈ F(S), dim A = ∞. Then we have either
[m(A), 0] ⊂ Range(m), or [0, m(A)] ⊂ Range(m), (depending on the sign
of m(A)).

Proof: We can assume thatm(A) < 0, since result is obviously true whenm(A) =
0, and the case whenm(A) > 0 would then follow by symmetry. By applying
Lemma 4.2 onA with ε = 1, we getA = B1⊕ B⊥A

1 , where dimB1 < ∞ and
m(B) ≤ 1 for all B ∈ P0(B⊥A

1 ). Let A1 = B⊥A
1 . Apply again the result of Lemma

4.2 on A1 with ε = 1
2. Then A1 = B2⊕ B

⊥A1
2 . Continuing like this, we get a

sequence of orthogonal finite dimensional subspaces{B1, B2, . . .} in A and a
nested sequenceA ⊃ A1 ⊃ A2 ⊃ · · · such thatm(B) ≤ 1

k for all B ∈ P0(Ak) and
m(Ak) ≤ m(A). We have to consider two possibilities.

(i) There existsN ∈ N such that for alln ≥ N, Bn = 0.
(ii) For all N ∈ N there existsn > N such thatBn 6= 0.

Assume that we have case (i). This would imply that for allB ∈
P0(AN), we havem(B) ≤ 0 and therefore by Corollary 4.1,m(B) ≤ 0 for any
B ∈ F(AN). This implies thatm is bounded onF(AN) and thus by Lemma 3.5,
it follows that [m(AN), 0] ⊂ Range(m). This implies that [m(A), 0] ⊂
Range(m).

In the other case, we have an infinite sequence{Bni : i ∈ N} of non-zero finite
dimensional subspaces satisfyingm(B) ≤ 1

ni−1 for all B ∈ P0(Bni ) andm(Bni ) >
1
ni

. We also have an infinite sequence of strictly nested subspacesA)An1)An2) · · ·
such thatAni−1 = Bni ⊕ Ani . By nothing that

A⊥A
ni
=
∨
F(A)
j≤i

Bnj ,
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it can be seen that

m

(⋂
i∈N

Ani

)
= m(A)−m

(∨
F(A)
i∈N

Bni

)

= m(A)−m

(∨
F(A)
i≤k

Bni

)
−m

(∨
F(A)
i>k

Bni

)

< m(A)−
∑
i≤k

1

ni
for all k ∈ N. (4.1)

It is evident that
∑

i∈N
1
ni

< ∞. Moreover,m(B)≤ 0 for all B ∈ P0(
⋂

i∈N Ani ).
If dim

⋂
i∈N Ani = ∞, then we would argue in the same manner as we did in case

(i) above and conclude immediately that [m(A), 0] ⊂ Range(m). So we assume
that dim

⋂
i∈N Ani = k. (Note that

⋂
i∈N Ani 6= 0 Let1 = m(A)−m(

⋂
i∈N Ani ).

By Eq. (4.1),1 > 0. Since
∑

i∈N
1
ni

< ∞, there existsj0 ∈ N such that

j0+k−1∑
i= j0−1

1

ni
<
1

2
.

Moreover, it is not difficult to check that for alli ∈ { j0, . . . , j0+ k}, there exists
xi ∈ Bni such that

0 < m([xi ]) ≤ 1

ni−1
.

Let

H = [xj0] ⊕ [xj0+1] ⊕ · · · ⊕ [xj0+k] ⊕
(⋂

i∈N
Ani

)
.

The dimension ofH is 2k+ 1≤ 3 and

m(H ) ≤
j0+k∑
i= j0

1

ni−1
+m

(⋂
i∈N

Ani

)

<
1

2
+m

(⋂
i∈N

Ani

)
< m(A).

In addition, sinceH ⊂ Anj0−1, we havem(B) < 1
nj0−1 for all B ∈ L(H ). Thus

m restricted onL(H ) is a bounded charge. Moreover, by the choice of thexi ’s
it is clear that we do not havem([x]) = m(H )

2k+1 for all x ∈ H . PutC =⋂i∈N Ani

and D = [xj0+1] ⊕ · · · ⊕ [xj0+k]. By Proposition 2.4, we have [m(C), m(D)] ⊂



P1: FHK/ILT

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472799 October 22, 2003 9:43 Style file version May 30th, 2002

Range of Charges on Orthogonally Closed Subspaces of an Inner Product Space 1941

Range(m), which implies that [m(A), 0] ⊂ Range(m). This completes the proof
of Lemma 4.4. ¤

Theorem 4.5. Let m be a sign-preserving charge on F(S) satisfying the Jauch-
Piron property wheredim S= ∞. ThenRange(m) is convex and contains the
interval (λ, µ), whereλ, µ ∈ R ∪ {−∞,+∞} are defined asλ = inf{m(A) : A ∈
F(S)} andµ = sup{m(A) : A ∈ F(S)}.

Proof: Using Lemma 4.4, we can prove, in a similar way as in Lemma 3.7, that for
any A ∈ F(S), we either have [m(A), 0] ⊂ Range(m), or [0,m(A)] ⊂ Range(m),
(depending on the sign ofm(A)). ¤

We conclude this paper with some remarks. We know that ifF(S) admits a
completely additive signed measure, thenS is topologically complete. We still do
not know whetherF(S), for an incompleteS, admits a non-zero charge. In Chetcuti
and Dvureˇcenskij (submitted), it has been proved that any Jordan charge onF(S),
dim S≥ 3, can be uniquely expressed as a summ= m1+m2, wherem1 is aP0(S)-
regular mapping onF(S)→ R is P0(S)-regular if for anyM ∈ F(S) and anyε > 0,
we can find a finite dimensional subspaceN of M such that|m(M)−m(N)| < ε.)
The questionIf F (S) admits a non-zero charge, does it imply that S is complete?
has not been answered yet. Here we ask:If F (S) admits a non-zero sign-preserving
charge satisfying the Jauch-Piron property, does it follow that S is complete?It
would be interesting to know whether this “mild property” of a charge is enough
to guarantee the completeness ofS.
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Dvurečenskij, A., Neubrunn, T., and Pulmannov´a, S. (1990). Finitely additive states and completeness
of inner product spaces,Foundation Physics20, 1091–1102.

Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space,Journal of Mathematical
Mechanics6, 885–893.

Halmos, P. R. (1988).Measure Theory, Springer-Verlag, New York.
Hamel, G. (1905). Eine Basis alen Zahlen und die unstetigen L¨osungen der Funktionalgleichung:

f (x + y) = f (x)+ f (y), Mathematical Analysis60, 459–462.
Hamhalter, J. and Pt´ak, P. (1987). A completeness criterion for inner product spaces,Bulletin of London

Mathematical Soceity19, 259–263.
Kalmbach, G. (1986)Measures and Hilbert Lattices, World Science Publishing Company, Singapoore.
Kreyszig, E. (1986).Introductory Functional Analysis with Applications, Wiley Classics Library,

Canada.
Maeda, F. and Maeda, S. (1970).Theory of Symmetric Lattices, Springer-Verlag, Berlin.
Pták, P. and Pulmannov´a, S. (1991).Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht,

The Netherlands.
Varadajan, V. S. (1985).Geometry of Quantum Theory, Springer-Verlag, New York Inc.


